《Redis 设计与实现》读书笔记(二) 链表


目录:

链表

​ 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地调整链表的长度。

​ 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为 Redis 使用的 C 语言并没有内置这种数据结构,所以 Redis 构建了自己的链表实现。

​ 链表在 Redis 中的应用非常广泛,比如列表键的底层实现之一就是链表:当一个列表键包含了数量比较多的元素,又或者列表中包含的元素都是比较长的字符串时,Redis 就会使用链表作为列表键的底层实现。

​ 举个例子,以下展示的 integers 列表键包含了从 11024 共一千零二十四个整数:

redis> LLEN integers
(integer) 1024

redis> LRANGE integers 0 10
1) "1"
2) "2"
3) "3"
4) "4"
5) "5"
6) "6"
7) "7"
8) "8"
9) "9"
10) "10"
11) "11"

除了链表键之外,发布与订阅、慢查询、监视器等功能也用到了链表,Redis 服务器本身还使用链表来保存多个客户端的状态信息,以及使用链表来构建客户端输出缓冲区(output buffer)。

链表和链表节点的实现

每个链表节点使用一个 adlist.h/listNode 结构来表示:

typedef struct listNode {
    // 前置节点
    struct listNode *prev;
    // 后置节点
    struct listNode *next;
    // 节点的值
    void *value;
} listNode;

多个 listNode 可以通过 prevnext 指针组成双端链表,如图 3-1 所示。

digraph { label = "\n 图 3-1 由多个 listNode 组成的双端链表" rankdir = LR; node [shape = record]; // more_prev [label = "...", shape = plaintext]; x [label = " listNode | value \n ..."]; y [label = " listNode | value \n ..."]; z [label = " listNode | value \n ..."]; more_next [label = "...", shape = plaintext]; // more_prev -> x [label = "next"]; x -> more_prev [label = "prev"]; x -> y [label = "next"]; y -> x [label = "prev"]; y -> z [label = "next"]; z -> y [label = "prev"]; z -> more_next [label = "next"]; more_next -> z [label = "prev"];}

虽然仅仅使用多个 listNode 结构就可以组成链表,但使用 adlist.h/list 来持有链表的话,操作起来会更方便:

typedef struct list {
    // 表头节点
    listNode *head;
    // 表尾节点
    listNode *tail;
    // 链表所包含的节点数量
    unsigned long len;
    // 节点值复制函数
    void *(*dup)(void *ptr);
    // 节点值释放函数
    void (*free)(void *ptr);
    // 节点值对比函数
    int (*match)(void *ptr, void *key);
} list;

list 结构为链表提供了表头指针 head 、表尾指针 tail ,以及链表长度计数器 len ,而 dupfreematch 成员则是用于实现多态链表所需的类型特定函数:

  • dup 函数用于复制链表节点所保存的值;
  • free 函数用于释放链表节点所保存的值;
  • match 函数则用于对比链表节点所保存的值和另一个输入值是否相等。

图 3-2 是由一个 list 结构和三个 listNode 结构组成的链表:

digraph { label = "\n 图 3-2 由 list 结构和 listNode 结构组成的链表" rankdir = LR; node [shape = record]; // list [label = "list |  head | <tail> tail | <len> len \n 3 | <dup> dup | <free> free | <match> match ", width = 2.0]; more_prev [label = "NULL", shape = plaintext]; x [label = " listNode | value \n ..."]; y [label = " listNode | value \n ..."]; z [label = " listNode | value \n ..."]; more_next [label = "NULL", shape = plaintext]; dup [label = "...", shape = plaintext]; free [label = "...", shape = plaintext]; match [label = "...", shape = plaintext]; // list:head -> x; list:tail -> z; list:dup -> dup; list:free -> free; list:match -> match; x -> y; y -> x; y -> z; z -> y; // more_prev -> x [dir = back]; z -> more_next;}

Redis 的链表实现的特性可以总结如下:

  • 双端:链表节点带有 prevnext 指针,获取某个节点的前置节点和后置节点的复杂度都是 O(1) 。
  • 无环:表头节点的 prev 指针和表尾节点的 next 指针都指向 NULL ,对链表的访问以 NULL 为终点。
  • 带表头指针和表尾指针:通过 list 结构的 head 指针和 tail 指针,程序获取链表的表头节点和表尾节点的复杂度为 O(1) 。
  • 带链表长度计数器:程序使用 list 结构的 len 属性来对 list 持有的链表节点进行计数,程序获取链表中节点数量的复杂度为 O(1) 。
  • 多态:链表节点使用 void* 指针来保存节点值,并且可以通过 list 结构的 dupfreematch 三个属性为节点值设置类型特定函数,所以链表可以用于保存各种不同类型的值。

源码(redis3.0)

/* adlist.h */
#ifndef __ADLIST_H__
#define __ADLIST_H__

typedef struct listNode {
    struct listNode *prev;
    struct listNode *next;
    void *value;
} listNode;

typedef struct listIter {
    listNode *next;
    int direction;
} listIter;

typedef struct list {
    listNode *head;
    listNode *tail;
    void *(*dup)(void *ptr);
    void (*free)(void *ptr);
    int (*match)(void *ptr, void *key);
    unsigned long len;
} list;

/* Functions implemented as macros */
#define listLength(l) ((l)->len)
#define listFirst(l) ((l)->head)
#define listLast(l) ((l)->tail)
#define listPrevNode(n) ((n)->prev)
#define listNextNode(n) ((n)->next)
#define listNodeValue(n) ((n)->value)

#define listSetDupMethod(l,m) ((l)->dup = (m))
#define listSetFreeMethod(l,m) ((l)->free = (m))
#define listSetMatchMethod(l,m) ((l)->match = (m))

#define listGetDupMethod(l) ((l)->dup)
#define listGetFree(l) ((l)->free)
#define listGetMatchMethod(l) ((l)->match)

/* Prototypes */
list *listCreate(void);
void listRelease(list *list);
list *listAddNodeHead(list *list, void *value);
list *listAddNodeTail(list *list, void *value);
list *listInsertNode(list *list, listNode *old_node, void *value, int after);
void listDelNode(list *list, listNode *node);
listIter *listGetIterator(list *list, int direction);
listNode *listNext(listIter *iter);
void listReleaseIterator(listIter *iter);
list *listDup(list *orig);
listNode *listSearchKey(list *list, void *key);
listNode *listIndex(list *list, long index);
void listRewind(list *list, listIter *li);
void listRewindTail(list *list, listIter *li);
void listRotate(list *list);

/* Directions for iterators */
#define AL_START_HEAD 0
#define AL_START_TAIL 1

#endif /* __ADLIST_H__ */
/* adlist.c */
#include <stdlib.h>
#include "adlist.h"
#include "zmalloc.h"

/* Create a new list. The created list can be freed with
 * AlFreeList(), but private value of every node need to be freed
 * by the user before to call AlFreeList().
 *
 * On error, NULL is returned. Otherwise the pointer to the new list. */
list *listCreate(void)
{
    struct list *list;

    if ((list = zmalloc(sizeof(*list))) == NULL)
        return NULL;
    list->head = list->tail = NULL;
    list->len = 0;
    list->dup = NULL;
    list->free = NULL;
    list->match = NULL;
    return list;
}

/* Free the whole list.
 *
 * This function can't fail. */
void listRelease(list *list)
{
    unsigned long len;
    listNode *current, *next;

    current = list->head;
    len = list->len;
    while(len--) {
        next = current->next;
        if (list->free) list->free(current->value);
        zfree(current);
        current = next;
    }
    zfree(list);
}

/* Add a new node to the list, to head, containing the specified 'value'
 * pointer as value.
 *
 * On error, NULL is returned and no operation is performed (i.e. the
 * list remains unaltered).
 * On success the 'list' pointer you pass to the function is returned. */
list *listAddNodeHead(list *list, void *value)
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;
    node->value = value;
    if (list->len == 0) {
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    } else {
        node->prev = NULL;
        node->next = list->head;
        list->head->prev = node;
        list->head = node;
    }
    list->len++;
    return list;
}

/* Add a new node to the list, to tail, containing the specified 'value'
 * pointer as value.
 *
 * On error, NULL is returned and no operation is performed (i.e. the
 * list remains unaltered).
 * On success the 'list' pointer you pass to the function is returned. */
list *listAddNodeTail(list *list, void *value)
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;
    node->value = value;
    if (list->len == 0) {
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    } else {
        node->prev = list->tail;
        node->next = NULL;
        list->tail->next = node;
        list->tail = node;
    }
    list->len++;
    return list;
}

list *listInsertNode(list *list, listNode *old_node, void *value, int after) {
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;
    node->value = value;
    if (after) {
        node->prev = old_node;
        node->next = old_node->next;
        if (list->tail == old_node) {
            list->tail = node;
        }
    } else {
        node->next = old_node;
        node->prev = old_node->prev;
        if (list->head == old_node) {
            list->head = node;
        }
    }
    if (node->prev != NULL) {
        node->prev->next = node;
    }
    if (node->next != NULL) {
        node->next->prev = node;
    }
    list->len++;
    return list;
}

/* Remove the specified node from the specified list.
 * It's up to the caller to free the private value of the node.
 *
 * This function can't fail. */
void listDelNode(list *list, listNode *node)
{
    if (node->prev)
        node->prev->next = node->next;
    else
        list->head = node->next;
    if (node->next)
        node->next->prev = node->prev;
    else
        list->tail = node->prev;
    if (list->free) list->free(node->value);
    zfree(node);
    list->len--;
}

/* Returns a list iterator 'iter'. After the initialization every
 * call to listNext() will return the next element of the list.
 *
 * This function can't fail. */
listIter *listGetIterator(list *list, int direction)
{
    listIter *iter;

    if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;
    if (direction == AL_START_HEAD)
        iter->next = list->head;
    else
        iter->next = list->tail;
    iter->direction = direction;
    return iter;
}

/* Release the iterator memory */
void listReleaseIterator(listIter *iter) {
    zfree(iter);
}

/* Create an iterator in the list private iterator structure */
void listRewind(list *list, listIter *li) {
    li->next = list->head;
    li->direction = AL_START_HEAD;
}

void listRewindTail(list *list, listIter *li) {
    li->next = list->tail;
    li->direction = AL_START_TAIL;
}

/* Return the next element of an iterator.
 * It's valid to remove the currently returned element using
 * listDelNode(), but not to remove other elements.
 *
 * The function returns a pointer to the next element of the list,
 * or NULL if there are no more elements, so the classical usage patter
 * is:
 *
 * iter = listGetIterator(list,<direction>);
 * while ((node = listNext(iter)) != NULL) {
 *     doSomethingWith(listNodeValue(node));
 * }
 *
 * */
listNode *listNext(listIter *iter)
{
    listNode *current = iter->next;

    if (current != NULL) {
        if (iter->direction == AL_START_HEAD)
            iter->next = current->next;
        else
            iter->next = current->prev;
    }
    return current;
}

/* Duplicate the whole list. On out of memory NULL is returned.
 * On success a copy of the original list is returned.
 *
 * The 'Dup' method set with listSetDupMethod() function is used
 * to copy the node value. Otherwise the same pointer value of
 * the original node is used as value of the copied node.
 *
 * The original list both on success or error is never modified. */
list *listDup(list *orig)
{
    list *copy;
    listIter *iter;
    listNode *node;

    if ((copy = listCreate()) == NULL)
        return NULL;
    copy->dup = orig->dup;
    copy->free = orig->free;
    copy->match = orig->match;
    iter = listGetIterator(orig, AL_START_HEAD);
    while((node = listNext(iter)) != NULL) {
        void *value;

        if (copy->dup) {
            value = copy->dup(node->value);
            if (value == NULL) {
                listRelease(copy);
                listReleaseIterator(iter);
                return NULL;
            }
        } else
            value = node->value;
        if (listAddNodeTail(copy, value) == NULL) {
            listRelease(copy);
            listReleaseIterator(iter);
            return NULL;
        }
    }
    listReleaseIterator(iter);
    return copy;
}

/* Search the list for a node matching a given key.
 * The match is performed using the 'match' method
 * set with listSetMatchMethod(). If no 'match' method
 * is set, the 'value' pointer of every node is directly
 * compared with the 'key' pointer.
 *
 * On success the first matching node pointer is returned
 * (search starts from head). If no matching node exists
 * NULL is returned. */
listNode *listSearchKey(list *list, void *key)
{
    listIter *iter;
    listNode *node;

    iter = listGetIterator(list, AL_START_HEAD);
    while((node = listNext(iter)) != NULL) {
        if (list->match) {
            if (list->match(node->value, key)) {
                listReleaseIterator(iter);
                return node;
            }
        } else {
            if (key == node->value) {
                listReleaseIterator(iter);
                return node;
            }
        }
    }
    listReleaseIterator(iter);
    return NULL;
}

/* Return the element at the specified zero-based index
 * where 0 is the head, 1 is the element next to head
 * and so on. Negative integers are used in order to count
 * from the tail, -1 is the last element, -2 the penultimate
 * and so on. If the index is out of range NULL is returned. */
listNode *listIndex(list *list, long index) {
    listNode *n;

    if (index < 0) {
        index = (-index)-1;
        n = list->tail;
        while(index-- && n) n = n->prev;
    } else {
        n = list->head;
        while(index-- && n) n = n->next;
    }
    return n;
}

/* Rotate the list removing the tail node and inserting it to the head. */
void listRotate(list *list) {
    listNode *tail = list->tail;

    if (listLength(list) <= 1) return;

    /* Detach current tail */
    list->tail = tail->prev;
    list->tail->next = NULL;
    /* Move it as head */
    list->head->prev = tail;
    tail->prev = NULL;
    tail->next = list->head;
    list->head = tail;
}

链表和链表节点的 API

表 3-1 列出了所有用于操作链表和链表节点的 API 。


表 3-1 链表和链表节点 API

函数 作用 时间复杂度
listSetDupMethod 将给定的函数设置为链表的节点值复制函数。 O(1) 。
listGetDupMethod 返回链表当前正在使用的节点值复制函数。 复制函数可以通过链表的 dup 属性直接获得,O(1)
listSetFreeMethod 将给定的函数设置为链表的节点值释放函数。 O(1) 。
listGetFree 返回链表当前正在使用的节点值释放函数。 释放函数可以通过链表的 free 属性直接获得,O(1)
listSetMatchMethod 将给定的函数设置为链表的节点值对比函数。 O(1)
listGetMatchMethod 返回链表当前正在使用的节点值对比函数。 对比函数可以通过链表的 match属性直接获得,O(1)
listLength 返回链表的长度(包含了多少个节点)。 链表长度可以通过链表的 len 属性直接获得,O(1) 。
listFirst 返回链表的表头节点。 表头节点可以通过链表的 head 属性直接获得,O(1) 。
listLast 返回链表的表尾节点。 表尾节点可以通过链表的 tail 属性直接获得,O(1) 。
listPrevNode 返回给定节点的前置节点。 前置节点可以通过节点的 prev 属性直接获得,O(1) 。
listNextNode 返回给定节点的后置节点。 后置节点可以通过节点的 next 属性直接获得,O(1) 。
listNodeValue 返回给定节点目前正在保存的值。 节点值可以通过节点的 value 属性直接获得,O(1) 。
listCreate 创建一个不包含任何节点的新链表。 O(1)
listAddNodeHead 将一个包含给定值的新节点添加到给定链表的表头。 O(1)
listAddNodeTail 将一个包含给定值的新节点添加到给定链表的表尾。 O(1)
listInsertNode 将一个包含给定值的新节点添加到给定节点的之前或者之后。 O(1)
listSearchKey 查找并返回链表中包含给定值的节点。 O(N) , N 为链表长度。
listIndex 返回链表在给定索引上的节点。 O(N) , N 为链表长度。
listDelNode 从链表中删除给定节点。 O(1) 。
listRotate 将链表的表尾节点弹出,然后将被弹出的节点插入到链表的表头,成为新的表头节点。 O(1)
listDup 复制一个给定链表的副本。 O(N) , N 为链表长度。
listRelease 释放给定链表,以及链表中的所有节点。 O(N) , N 为链表长度。