链表
链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地调整链表的长度。
作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为 Redis 使用的 C 语言并没有内置这种数据结构,所以 Redis 构建了自己的链表实现。
链表在 Redis 中的应用非常广泛,比如列表键的底层实现之一就是链表:当一个列表键包含了数量比较多的元素,又或者列表中包含的元素都是比较长的字符串时,Redis 就会使用链表作为列表键的底层实现。
举个例子,以下展示的 integers
列表键包含了从 1
到 1024
共一千零二十四个整数:
redis> LLEN integers
(integer) 1024
redis> LRANGE integers 0 10
1) "1"
2) "2"
3) "3"
4) "4"
5) "5"
6) "6"
7) "7"
8) "8"
9) "9"
10) "10"
11) "11"
除了链表键之外,发布与订阅、慢查询、监视器等功能也用到了链表,Redis 服务器本身还使用链表来保存多个客户端的状态信息,以及使用链表来构建客户端输出缓冲区(output buffer)。
链表和链表节点的实现
每个链表节点使用一个 adlist.h/listNode
结构来表示:
typedef struct listNode {
// 前置节点
struct listNode *prev;
// 后置节点
struct listNode *next;
// 节点的值
void *value;
} listNode;
多个 listNode
可以通过 prev
和 next
指针组成双端链表,如图 3-1 所示。
虽然仅仅使用多个 listNode
结构就可以组成链表,但使用 adlist.h/list
来持有链表的话,操作起来会更方便:
typedef struct list {
// 表头节点
listNode *head;
// 表尾节点
listNode *tail;
// 链表所包含的节点数量
unsigned long len;
// 节点值复制函数
void *(*dup)(void *ptr);
// 节点值释放函数
void (*free)(void *ptr);
// 节点值对比函数
int (*match)(void *ptr, void *key);
} list;
list
结构为链表提供了表头指针 head
、表尾指针 tail
,以及链表长度计数器 len
,而 dup
、 free
和 match
成员则是用于实现多态链表所需的类型特定函数:
dup
函数用于复制链表节点所保存的值;free
函数用于释放链表节点所保存的值;match
函数则用于对比链表节点所保存的值和另一个输入值是否相等。
图 3-2 是由一个 list
结构和三个 listNode
结构组成的链表:
Redis 的链表实现的特性可以总结如下:
- 双端:链表节点带有
prev
和next
指针,获取某个节点的前置节点和后置节点的复杂度都是 O(1) 。 - 无环:表头节点的
prev
指针和表尾节点的next
指针都指向NULL
,对链表的访问以NULL
为终点。 - 带表头指针和表尾指针:通过
list
结构的head
指针和tail
指针,程序获取链表的表头节点和表尾节点的复杂度为 O(1) 。 - 带链表长度计数器:程序使用
list
结构的len
属性来对list
持有的链表节点进行计数,程序获取链表中节点数量的复杂度为 O(1) 。 - 多态:链表节点使用
void*
指针来保存节点值,并且可以通过list
结构的dup
、free
、match
三个属性为节点值设置类型特定函数,所以链表可以用于保存各种不同类型的值。
源码(redis3.0)
/* adlist.h */
#ifndef __ADLIST_H__
#define __ADLIST_H__
typedef struct listNode {
struct listNode *prev;
struct listNode *next;
void *value;
} listNode;
typedef struct listIter {
listNode *next;
int direction;
} listIter;
typedef struct list {
listNode *head;
listNode *tail;
void *(*dup)(void *ptr);
void (*free)(void *ptr);
int (*match)(void *ptr, void *key);
unsigned long len;
} list;
/* Functions implemented as macros */
#define listLength(l) ((l)->len)
#define listFirst(l) ((l)->head)
#define listLast(l) ((l)->tail)
#define listPrevNode(n) ((n)->prev)
#define listNextNode(n) ((n)->next)
#define listNodeValue(n) ((n)->value)
#define listSetDupMethod(l,m) ((l)->dup = (m))
#define listSetFreeMethod(l,m) ((l)->free = (m))
#define listSetMatchMethod(l,m) ((l)->match = (m))
#define listGetDupMethod(l) ((l)->dup)
#define listGetFree(l) ((l)->free)
#define listGetMatchMethod(l) ((l)->match)
/* Prototypes */
list *listCreate(void);
void listRelease(list *list);
list *listAddNodeHead(list *list, void *value);
list *listAddNodeTail(list *list, void *value);
list *listInsertNode(list *list, listNode *old_node, void *value, int after);
void listDelNode(list *list, listNode *node);
listIter *listGetIterator(list *list, int direction);
listNode *listNext(listIter *iter);
void listReleaseIterator(listIter *iter);
list *listDup(list *orig);
listNode *listSearchKey(list *list, void *key);
listNode *listIndex(list *list, long index);
void listRewind(list *list, listIter *li);
void listRewindTail(list *list, listIter *li);
void listRotate(list *list);
/* Directions for iterators */
#define AL_START_HEAD 0
#define AL_START_TAIL 1
#endif /* __ADLIST_H__ */
/* adlist.c */
#include <stdlib.h>
#include "adlist.h"
#include "zmalloc.h"
/* Create a new list. The created list can be freed with
* AlFreeList(), but private value of every node need to be freed
* by the user before to call AlFreeList().
*
* On error, NULL is returned. Otherwise the pointer to the new list. */
list *listCreate(void)
{
struct list *list;
if ((list = zmalloc(sizeof(*list))) == NULL)
return NULL;
list->head = list->tail = NULL;
list->len = 0;
list->dup = NULL;
list->free = NULL;
list->match = NULL;
return list;
}
/* Free the whole list.
*
* This function can't fail. */
void listRelease(list *list)
{
unsigned long len;
listNode *current, *next;
current = list->head;
len = list->len;
while(len--) {
next = current->next;
if (list->free) list->free(current->value);
zfree(current);
current = next;
}
zfree(list);
}
/* Add a new node to the list, to head, containing the specified 'value'
* pointer as value.
*
* On error, NULL is returned and no operation is performed (i.e. the
* list remains unaltered).
* On success the 'list' pointer you pass to the function is returned. */
list *listAddNodeHead(list *list, void *value)
{
listNode *node;
if ((node = zmalloc(sizeof(*node))) == NULL)
return NULL;
node->value = value;
if (list->len == 0) {
list->head = list->tail = node;
node->prev = node->next = NULL;
} else {
node->prev = NULL;
node->next = list->head;
list->head->prev = node;
list->head = node;
}
list->len++;
return list;
}
/* Add a new node to the list, to tail, containing the specified 'value'
* pointer as value.
*
* On error, NULL is returned and no operation is performed (i.e. the
* list remains unaltered).
* On success the 'list' pointer you pass to the function is returned. */
list *listAddNodeTail(list *list, void *value)
{
listNode *node;
if ((node = zmalloc(sizeof(*node))) == NULL)
return NULL;
node->value = value;
if (list->len == 0) {
list->head = list->tail = node;
node->prev = node->next = NULL;
} else {
node->prev = list->tail;
node->next = NULL;
list->tail->next = node;
list->tail = node;
}
list->len++;
return list;
}
list *listInsertNode(list *list, listNode *old_node, void *value, int after) {
listNode *node;
if ((node = zmalloc(sizeof(*node))) == NULL)
return NULL;
node->value = value;
if (after) {
node->prev = old_node;
node->next = old_node->next;
if (list->tail == old_node) {
list->tail = node;
}
} else {
node->next = old_node;
node->prev = old_node->prev;
if (list->head == old_node) {
list->head = node;
}
}
if (node->prev != NULL) {
node->prev->next = node;
}
if (node->next != NULL) {
node->next->prev = node;
}
list->len++;
return list;
}
/* Remove the specified node from the specified list.
* It's up to the caller to free the private value of the node.
*
* This function can't fail. */
void listDelNode(list *list, listNode *node)
{
if (node->prev)
node->prev->next = node->next;
else
list->head = node->next;
if (node->next)
node->next->prev = node->prev;
else
list->tail = node->prev;
if (list->free) list->free(node->value);
zfree(node);
list->len--;
}
/* Returns a list iterator 'iter'. After the initialization every
* call to listNext() will return the next element of the list.
*
* This function can't fail. */
listIter *listGetIterator(list *list, int direction)
{
listIter *iter;
if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;
if (direction == AL_START_HEAD)
iter->next = list->head;
else
iter->next = list->tail;
iter->direction = direction;
return iter;
}
/* Release the iterator memory */
void listReleaseIterator(listIter *iter) {
zfree(iter);
}
/* Create an iterator in the list private iterator structure */
void listRewind(list *list, listIter *li) {
li->next = list->head;
li->direction = AL_START_HEAD;
}
void listRewindTail(list *list, listIter *li) {
li->next = list->tail;
li->direction = AL_START_TAIL;
}
/* Return the next element of an iterator.
* It's valid to remove the currently returned element using
* listDelNode(), but not to remove other elements.
*
* The function returns a pointer to the next element of the list,
* or NULL if there are no more elements, so the classical usage patter
* is:
*
* iter = listGetIterator(list,<direction>);
* while ((node = listNext(iter)) != NULL) {
* doSomethingWith(listNodeValue(node));
* }
*
* */
listNode *listNext(listIter *iter)
{
listNode *current = iter->next;
if (current != NULL) {
if (iter->direction == AL_START_HEAD)
iter->next = current->next;
else
iter->next = current->prev;
}
return current;
}
/* Duplicate the whole list. On out of memory NULL is returned.
* On success a copy of the original list is returned.
*
* The 'Dup' method set with listSetDupMethod() function is used
* to copy the node value. Otherwise the same pointer value of
* the original node is used as value of the copied node.
*
* The original list both on success or error is never modified. */
list *listDup(list *orig)
{
list *copy;
listIter *iter;
listNode *node;
if ((copy = listCreate()) == NULL)
return NULL;
copy->dup = orig->dup;
copy->free = orig->free;
copy->match = orig->match;
iter = listGetIterator(orig, AL_START_HEAD);
while((node = listNext(iter)) != NULL) {
void *value;
if (copy->dup) {
value = copy->dup(node->value);
if (value == NULL) {
listRelease(copy);
listReleaseIterator(iter);
return NULL;
}
} else
value = node->value;
if (listAddNodeTail(copy, value) == NULL) {
listRelease(copy);
listReleaseIterator(iter);
return NULL;
}
}
listReleaseIterator(iter);
return copy;
}
/* Search the list for a node matching a given key.
* The match is performed using the 'match' method
* set with listSetMatchMethod(). If no 'match' method
* is set, the 'value' pointer of every node is directly
* compared with the 'key' pointer.
*
* On success the first matching node pointer is returned
* (search starts from head). If no matching node exists
* NULL is returned. */
listNode *listSearchKey(list *list, void *key)
{
listIter *iter;
listNode *node;
iter = listGetIterator(list, AL_START_HEAD);
while((node = listNext(iter)) != NULL) {
if (list->match) {
if (list->match(node->value, key)) {
listReleaseIterator(iter);
return node;
}
} else {
if (key == node->value) {
listReleaseIterator(iter);
return node;
}
}
}
listReleaseIterator(iter);
return NULL;
}
/* Return the element at the specified zero-based index
* where 0 is the head, 1 is the element next to head
* and so on. Negative integers are used in order to count
* from the tail, -1 is the last element, -2 the penultimate
* and so on. If the index is out of range NULL is returned. */
listNode *listIndex(list *list, long index) {
listNode *n;
if (index < 0) {
index = (-index)-1;
n = list->tail;
while(index-- && n) n = n->prev;
} else {
n = list->head;
while(index-- && n) n = n->next;
}
return n;
}
/* Rotate the list removing the tail node and inserting it to the head. */
void listRotate(list *list) {
listNode *tail = list->tail;
if (listLength(list) <= 1) return;
/* Detach current tail */
list->tail = tail->prev;
list->tail->next = NULL;
/* Move it as head */
list->head->prev = tail;
tail->prev = NULL;
tail->next = list->head;
list->head = tail;
}
链表和链表节点的 API
表 3-1 列出了所有用于操作链表和链表节点的 API 。
表 3-1 链表和链表节点 API
函数 | 作用 | 时间复杂度 |
---|---|---|
listSetDupMethod |
将给定的函数设置为链表的节点值复制函数。 | O(1) 。 |
listGetDupMethod |
返回链表当前正在使用的节点值复制函数。 | 复制函数可以通过链表的 dup 属性直接获得,O(1) |
listSetFreeMethod |
将给定的函数设置为链表的节点值释放函数。 | O(1) 。 |
listGetFree |
返回链表当前正在使用的节点值释放函数。 | 释放函数可以通过链表的 free 属性直接获得,O(1) |
listSetMatchMethod |
将给定的函数设置为链表的节点值对比函数。 | O(1) |
listGetMatchMethod |
返回链表当前正在使用的节点值对比函数。 | 对比函数可以通过链表的 match 属性直接获得,O(1) |
listLength |
返回链表的长度(包含了多少个节点)。 | 链表长度可以通过链表的 len 属性直接获得,O(1) 。 |
listFirst |
返回链表的表头节点。 | 表头节点可以通过链表的 head 属性直接获得,O(1) 。 |
listLast |
返回链表的表尾节点。 | 表尾节点可以通过链表的 tail 属性直接获得,O(1) 。 |
listPrevNode |
返回给定节点的前置节点。 | 前置节点可以通过节点的 prev 属性直接获得,O(1) 。 |
listNextNode |
返回给定节点的后置节点。 | 后置节点可以通过节点的 next 属性直接获得,O(1) 。 |
listNodeValue |
返回给定节点目前正在保存的值。 | 节点值可以通过节点的 value 属性直接获得,O(1) 。 |
listCreate |
创建一个不包含任何节点的新链表。 | O(1) |
listAddNodeHead |
将一个包含给定值的新节点添加到给定链表的表头。 | O(1) |
listAddNodeTail |
将一个包含给定值的新节点添加到给定链表的表尾。 | O(1) |
listInsertNode |
将一个包含给定值的新节点添加到给定节点的之前或者之后。 | O(1) |
listSearchKey |
查找并返回链表中包含给定值的节点。 | O(N) , N 为链表长度。 |
listIndex |
返回链表在给定索引上的节点。 | O(N) , N 为链表长度。 |
listDelNode |
从链表中删除给定节点。 | O(1) 。 |
listRotate |
将链表的表尾节点弹出,然后将被弹出的节点插入到链表的表头,成为新的表头节点。 | O(1) |
listDup |
复制一个给定链表的副本。 | O(N) , N 为链表长度。 |
listRelease |
释放给定链表,以及链表中的所有节点。 | O(N) , N 为链表长度。 |